Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Environ Microbiol Rep ; 16(3): e13265, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38747207

ABSTRACT

Role of dust in Salmonella transmission on chicken farms is not well characterised. Salmonella Typhimurium (ST) infection of commercial layer chickens was investigated using a novel sprinkling method of chicken dust spiked with ST and the uptake compared to a conventional oral infection. While both inoculation methods resulted in colonisation of the intestines, the Salmonella load in liver samples was significantly higher at 7 dpi after exposing chicks to sprinkled dust compared to the oral infection group. Infection of chickens using the sprinkling method at a range of doses showed a threshold for colonisation of the gut and organs as low as 1000 CFU/g of dust. Caecal content microbiota analysis post-challenge showed that the profiles of chickens infected by the sprinkling and oral routes were not significantly different; however, both challenges induced differences when compared to the uninfected negative controls. Overall, the study showed that dust sprinkling was an effective way to experimentally colonise chickens with Salmonella and alter the gut microbiota than oral gavage at levels as low as 1000 CFU/g dust. This infection model mimics the field scenario of Salmonella infection in poultry sheds. The model can be used for future challenge studies for effective Salmonella control.


Subject(s)
Chickens , Dust , Gastrointestinal Microbiome , Poultry Diseases , Salmonella Infections, Animal , Salmonella typhimurium , Animals , Chickens/microbiology , Salmonella typhimurium/growth & development , Dust/analysis , Salmonella Infections, Animal/microbiology , Salmonella Infections, Animal/prevention & control , Poultry Diseases/microbiology , Poultry Diseases/prevention & control , Cecum/microbiology , Liver/microbiology
3.
Front Vet Sci ; 11: 1364731, 2024.
Article in English | MEDLINE | ID: mdl-38686027

ABSTRACT

Among the Salmonella reduction strategies in poultry production, one option is to use a Salmonella vaccine. The aim of vaccinating layer flocks is to reduce the shedding of wild-type Salmonella in the poultry environment, thereby reducing the contamination of poultry products (eggs and meat). Nutritive diluent and a higher dose of vaccine may enhance its colonization potential in the gut of chickens. In this study, a commercially available live attenuated vaccine (Vaxsafe® ST) was reconstituted in different media and delivered orally to day-old chicks at three different doses (107, 108, and 109 CFU/chick). Gut colonization of the vaccine strain and the effects of vaccination on gut microbiota were assessed in commercial-layer chickens. The vaccine diluent and dosage minimally affected microbiota alpha diversity. Microbiota beta diversity was significantly different (P < 0.05) based on the vaccine diluent and dose, which indicated that the vaccinated and unvaccinated chickens had different gut microbial communities. Differences were noted in the abundance of several genera, including Blautia, Colidextribacter, Dickeya, Enterococcus, Lactobacillus, Pediococcus, and Sellimonas. The abundance of Colidextribacter was significantly lower in chickens that received vaccine reconstituted in Marek's and water diluents, while Lactobacillus abundance was significantly lower in the water group. The highest vaccine dose (109 CFU/chick) did not significantly alter (P > 0.05) the abundance of microbial genera. Chicken age affected the microbiota composition more significantly than the vaccine dose and diluent. The abundance of Lactobacillus, Blautia, Caproiciproducens, Pediococcus, and Colidextribacter was significantly higher on day 14 compared with day 7 post-vaccination. The Salmonella Typhimurium vaccine load in the caeca was not significantly affected by diluent and vaccine dose; however, it was significantly lower (P < 0.0001) on day 14 compared with day 7 post-vaccination. Overall, the S. Typhimurium vaccine minimally affected the gut microbiota structure of layer chicks, whereas changes in microbiota were more significant with chicken age.

4.
Vaccines (Basel) ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38675791

ABSTRACT

Nanoparticles show great promise as a platform for developing vaccines for the prevention of infectious disease. We have been investigating a method whereby nanocapsules can be formulated from protein, such that the final capsules contain only the cross-linked protein itself. Such nanocapsules are made using a silica templating system and can be customised in terms of size and porosity. Here we compare the construction and characteristics of nanocapsules from four different proteins: one a model protein (ovalbumin) and three from infectious disease pathogens, namely the influenza virus, Helicobacter pylori and HIV. Two of the nanocapsules were assessed further. We confirm that nanocapsules constructed from the urease A subunit of H. pylori can reduce subsequent infection in a vaccinated mouse model. Further, we show that capsules constructed from the HIV gp120 protein can be taken up by dendritic cells in tissue culture and can be recognised by antibodies raised against the virus. These results point to the utility of this method in constructing protein-only nanocapsules from proteins of varying sizes and isoelectric points.

5.
Microorganisms ; 12(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38399823

ABSTRACT

The supplementation of antimicrobial growth promoters (AGPs) has been banned in many countries because of the emergence of antimicrobial-resistant pathogens in poultry products and the environment. Probiotics have been broadly studied and demonstrated as a promising AGP substitute. Our study is centred on the effects of a multi-strain Bacillus-based probiotic product on broiler production performance and gut microbial profile in a dexamethasone-induced leaky gut challenge. Two hundred and fifty-six broiler chicks were hatched and randomly assigned into four groups (wheat-soybean meal basal diet (BD) = non-supplemented control (C), BD supplemented with dexamethasone in week 4 (CD), BD containing a probiotic from day one (P), and BD containing a probiotic from day one and supplemented with dexamethasone during challenge week 4 (PD)). The production performance and caecal, gizzard, jejunal lumen and jejunal mucosa swab microbiota were studied by 16S rRNA gene sequencing. The Bacillus probiotic product significantly improved production performance and altered caecal gut microbiota (p ≤ 0.05), but no significant impact on microbiota was observed in other gut sections.

6.
J Anim Sci Biotechnol ; 15(1): 20, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38317171

ABSTRACT

BACKGROUND: The gut microbiota influences chicken health, welfare, and productivity. A diverse and balanced microbiota has been associated with improved growth, efficient feed utilisation, a well-developed immune system, disease resistance, and stress tolerance in chickens. Previous studies on chicken gut microbiota have predominantly focused on broiler chickens and have usually been limited to one or two sections of the digestive system, under controlled research environments, and often sampled at a single time point. To extend these studies, this investigation examined the microbiota of commercially raised layer chickens across all major gut sections of the digestive system and with regular sampling from rearing to the end of production at 80 weeks. The aim was to build a detailed picture of microbiota development across the entire digestive system of layer chickens and study spatial and temporal dynamics. RESULTS: The taxonomic composition of gut microbiota differed significantly between birds in the rearing and production stages, indicating a shift after laying onset. Similar microbiota compositions were observed between proventriculus and gizzard, as well as between jejunum and ileum, likely due to their anatomical proximity. Lactobacillus dominated the upper gut in pullets and the lower gut in older birds. The oesophagus had a high proportion of Proteobacteria, including opportunistic pathogens such as Gallibacterium. Relative abundance of Gallibacterium increased after peak production in multiple gut sections. Aeriscardovia was enriched in the late-lay phase compared to younger birds in multiple gut sections. Age influenced microbial richness and diversity in different organs. The upper gut showed decreased diversity over time, possibly influenced by dietary changes, while the lower gut, specifically cecum and colon, displayed increased richness as birds matured. However, age-related changes were inconsistent across all organs, suggesting the influence of organ-specific factors in microbiota maturation. CONCLUSION: Addressing a gap in previous research, this study explored the microbiota across all major gut sections and tracked their dynamics from rearing to the end of the production cycle in commercially raised layer chickens. This study provides a comprehensive understanding of microbiota structure and development which help to develop targeted strategies to optimise gut health and overall productivity in poultry production.

7.
Appl Microbiol Biotechnol ; 108(1): 142, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231265

ABSTRACT

This research investigates the effects of phytogenic feed additives (PFAs) on the growth performance, gut microbial community, and microbial metabolic functions in weaned piglets via a combined 16S rRNA gene amplicon and shotgun metagenomics approach. A controlled trial was conducted using 200 pigs to highlight the significant influence of PFAs on gut microbiota dynamics. Notably, the treatment group revealed an increased gut microbiota diversity, as measured with the Shannon and Simpson indices. The increase in diversity is accompanied by an increase in beneficial bacterial taxa, such as Roseburia, Faecalibacterium, and Prevotella, and a decline in potential pathogens like Clostridium sensu stricto 1 and Campylobacter. Shotgun sequencing at the species level confirmed these findings. This modification in microbial profile was coupled with an altered profile of microbial metabolic pathways, suggesting a reconfiguration of microbial function under PFA influence. Significant shifts in overall microbial community structure by week 8 demonstrate PFA treatment's temporal impact. Histomorphological examination unveiled improved gut structure in PFA-treated piglets. The results of this study indicate that the use of PFAs as dietary supplements can be an effective strategy, augmenting gut microbiota diversity, reshaping microbial function, enhancing gut structure, and optimising intestinal health of weaned piglets providing valuable implications for swine production. KEY POINTS: • PFAs significantly diversify the gut microbiota in weaned piglets, aiding balance. • Changes in gut structure due to PFAs indicate improved resistance to weaning stress. • PFAs show potential to ease weaning stress, offering a substitute for antibiotics in piglet diets.


Subject(s)
Fluorocarbons , Gastrointestinal Microbiome , Microbiota , Animals , Swine , RNA, Ribosomal, 16S/genetics , Anti-Bacterial Agents
8.
R Soc Open Sci ; 10(12): 231119, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38126065

ABSTRACT

Antimicrobial peptides have the potential to be used in a range of applications, including as an alternative to conventional antibiotics for the treatment of bacterial infections of humans and animals. Therefore, there is interest in identifying novel bacteriocins which have desirable physico-chemical properties or antimicrobial activities. Paenibacillus polymyxa #23, isolated from a marine sponge, has wide spectrum antimicrobial activity against Gram-negative and Gram-positive bacteria. To explore the basis of this antimicrobial activity, the complete genome sequence of the strain was examined. Multiple genes predicted to encode antimicrobial peptides were identified. One gene was predicted to encode a novel sactipeptide bacteriocin, named SacP23. To confirm that SacP23 does have antimicrobial activity and to explore the antimicrobial spectrum of the peptide it was heterologously expressed in Bacillus subtilis. A cluster of eight genes, encoding a full complement of accessory genes as well as the structural gene expressed from the native promoter, was cloned into B. subtilis BS54A. The recombinant strain displayed antimicrobial activity against several Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus. Heterologous expression of a whole gene cluster offers a powerful way to interrogate and resolve the various antimicrobial activities expressed by native strains that encode multiple compounds of interest.

9.
Nat Commun ; 14(1): 7737, 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007555

ABSTRACT

Hospital-acquired diarrhoea (HAD) is common, and often associated with gut microbiota and metabolome dysbiosis following antibiotic administration. Clostridioides difficile is the most significant antibiotic-associated diarrhoeal (AAD) pathogen, but less is known about the microbiota and metabolome associated with AAD and C. difficile infection (CDI) with contrasting antibiotic treatment. We characterised faecal microbiota and metabolome for 169 HAD patients (33 with CDI and 133 non-CDI) to determine dysbiosis biomarkers and gain insights into metabolic strategies C. difficile might use for gut colonisation. The specimen microbial community was analysed using 16 S rRNA gene amplicon sequencing, coupled with untargeted metabolite profiling using gas chromatography-mass spectrometry (GC-MS), and short-chain fatty acid (SCFA) profiling using GC-MS. AAD and CDI patients were associated with a spectrum of dysbiosis reflecting non-antibiotic, short-term, and extended-antibiotic treatment. Notably, extended antibiotic treatment was associated with enterococcal proliferation (mostly vancomycin-resistant Enterococcus faecium) coupled with putative biomarkers of enterococcal tyrosine decarboxylation. We also uncovered unrecognised metabolome dynamics associated with concomitant enterococcal proliferation and CDI, including biomarkers of Stickland fermentation and amino acid competition that could distinguish CDI from non-CDI patients. Here we show, candidate metabolic biomarkers for diagnostic development with possible implications for CDI and vancomycin-resistant enterococci (VRE) treatment.


Subject(s)
Clostridioides difficile , Clostridium Infections , Humans , Clostridioides difficile/genetics , Dysbiosis , Multiomics , Diarrhea , Anti-Bacterial Agents/adverse effects , Biomarkers , Clostridium Infections/diagnosis , Cell Proliferation , Hospitals
10.
Anim Nutr ; 15: 197-209, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38023383

ABSTRACT

The microbiota of the gastrointestinal tract influences gut health, which in turn strongly impacts the general health and productivity of laying hens. It is essential to characterise the composition and temporal development of the gut microbiota in healthy layers raised under different management systems, to understand the variations in typical healthy microbiota structure, so that deviations from this might be recognised and correlated with production and health issues when they arise. The present investigation aimed to study the temporal development and phylogenetic composition of the gut microbiota of four commercially raised layer flocks from hatch to end of the production cycle. Non-intrusive faecal sampling was undertaken as a proxy to represent the gut microbiota. Sequencing of 16S rRNA gene amplicons was used to characterise the microbiota. Beta diversity analysis indicated that each faecal microbiota was different across the four flocks and had subtly different temporal development patterns. Despite these inter-flock differences, common patterns of microbiota development were identified. Firmicutes and Proteobacteria were dominant at an early age in all flocks. The microbiota developed gradually during the rearing phase; richness and diversity increased after 42 d of age and then underwent significant changes in composition after the shift to the production farms, with Bacteroidota becoming more dominant in older birds. By developing a more profound knowledge of normal microbiota development in layers, opportunities to harness the microbiota to aid in the management of layer gut health and productivity may be more clearly seen and realised.

12.
Sci Rep ; 13(1): 227, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36604449

ABSTRACT

Campylobacter hepaticus is an important pathogen which causes Spotty Liver Disease (SLD) in layer chickens. SLD results in an increase in mortality and a significant decrease in egg production and therefore is an important economic concern of the global poultry industry. The human pathogen Campylobacter jejuni encodes an N-linked glycosylation system that plays fundamental roles in host colonization and pathogenicity. While N-linked glycosylation has been extensively studied in C. jejuni and is now known to occur in a range of Campylobacter species, little is known about C. hepaticus glycosylation. In this study glycoproteomic analysis was used to confirm the functionality of the C. hepaticus N-glycosylation system. It was shown that C. hepaticus HV10T modifies > 35 proteins with an N-linked heptasaccharide glycan. C. hepaticus shares highly conserved glycoproteins with C. jejuni that are involved in host colonisation and also possesses unique glycoproteins which may contribute to its ability to survive in challenging host environments. C. hepaticus N-glycosylation may function as an important virulence factor, providing an opportunity to investigate and develop a better understanding the system's role in poultry infection.


Subject(s)
Campylobacter Infections , Campylobacter jejuni , Campylobacter , Liver Diseases , Poultry Diseases , Animals , Humans , Glycosylation , Campylobacter Infections/veterinary , Campylobacter Infections/microbiology , Chickens/microbiology , Campylobacter/genetics , Campylobacter/metabolism , Liver Diseases/microbiology , Poultry/metabolism , Poultry Diseases/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
13.
Vet Microbiol ; 276: 109603, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36423482

ABSTRACT

Spotty Liver Disease (SLD) is a significant disease of commercial layer hens. It can cause up to 10 % flock mortalities and reduce egg production by 25 %. Campylobacter hepaticus has been identified as the main cause of the disease, although it also appears that predisposing factors, such as some form of stress, may increase the likelihood of clinical disease occurring. Recently, a newly identified species, Campylobacter bilis, was isolated from bile samples of clinical SLD affected chickens. To investigate the pathogenic potential of C. bilis two independent isolates were used in infection trials of layer hens. Within 6 days of oral challenge birds developed typical SLD liver lesions, demonstrating that both strains induced SLD. C. bilis could be recovered from all the challenged birds that developed SLD. Thus, each of the steps in Koch's postulates have been fulfilled, confirming that C. bilis is an additional cause of SLD. A PCR method was developed which can specifically detect C. bilis from samples with complex microbiota. The identification of this newly discovered Campylobacter species as a second cause of SLD and the provision of a rapid method to detect the SLD causing bacterium will help with SLD vaccine development and epidemiology, thus assisting in the control of this important disease of poultry.


Subject(s)
Campylobacter Infections , Campylobacter , Liver Diseases , Poultry Diseases , Animals , Female , Chickens/microbiology , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Poultry Diseases/microbiology , Liver Diseases/microbiology , Liver Diseases/veterinary
14.
Animals (Basel) ; 12(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36496817

ABSTRACT

The concept of designer microbiota in chicken is focused on early exposure of the hatchlings to pathogen-free microbiota inoculum, limiting the early access to harmful and pathogenic microorganisms, thus promoting colonisation of the gut with beneficial and natural poultry microbiota. In this study, we controlled colonisation of the intestine in broiler chickens in a large-scale industrial setting via at-hatch administration of a commercial product containing a highly diverse microbiota originating from the chicken caecum. The treatment significantly transformed the microbiota membership in the crop, proventriculus, jejunum and caecum and significantly altered the taxa abundance in the jejunum, jejunum mucosa, and caecum estimated using PERMANOVA and unweighted and weighted UniFrac distances, respectively. The treatment also improved the growth rate in chickens with no significant alteration in feed conversion ratio. A comparison of inoculum product microbiota structure revealed that the inoculum had the highest Shannon diversity index compared to all investigated gut sections, and the number of Observed Species second only to the caecal community. PCoA plots using weighted or unweighted UniFrac placed the inoculum samples together with the samples from the caecal origin.

15.
Front Vet Sci ; 9: 1058110, 2022.
Article in English | MEDLINE | ID: mdl-36452145

ABSTRACT

Spotty liver disease (SLD) caused by Campylobacter hepaticus affects the health and productivity of layer hens and is a disease of concern in poultry. In this study, blood and cloacal swab samples were collected from 709 birds across 11 free-range layer farms from different regions of Australia. The prevalence of C. hepaticus specific antibodies and DNA was assessed using a C. hepaticus specific ELISA and PCR and its correlation with mortalities and changes in egg production was analyzed to better understand the seroprevalence of C. hepaticus in Australian free-range layer farms. C. hepaticus specific antibodies were detected from birds in four of the five farms that had no history of SLD with seroprevalence as high as 41% in one of the farms. Seroprevalence of anti-C. hepaticus antibodies among flocks that had an active or previous SLD outbreak varied between 2 and 64%. C. hepaticus DNA was detected from birds in three farms with no known SLD history and five farms with confirmed SLD outbreaks. A good correlation was observed between the ELISA and PCR results with a Pearson correlation coefficient value of 0.85 (p-value = 0.001). No correlation was observed between the flock size or flock age and ELISA or PCR outcomes, and no significant difference between the seroprevalence of anti-C. hepaticus antibodies among flocks with or without a known history of SLD was established (p = 0.143). This study demonstrates the usefulness of C. hepaticus specific ELISA and PCR in identifying the occurrence of mild or sub-clinical SLD and provides a broader and more complete understanding of SLD epidemiology that will inform future research aimed at the development of methods to control SLD, such as appropriate biosecurity measures, vaccines, and feed additives.

16.
Viruses ; 14(11)2022 11 17.
Article in English | MEDLINE | ID: mdl-36423151

ABSTRACT

Spotty liver disease (SLD) causes substantial egg production losses and chicken mortality; therefore, it is a disease that concerns Australian egg farmers. Over the last few decades, much research has been conducted to determine the etiologic agents of SLD and to develop potential therapeutics; however, SLD still remains a major issue for the chicken industries globally and remained without the elucidation of potentially multiple pathogens involved. To help fill this gap, this study was aimed at understanding the viral diversity of bile samples from which the SLD-causing bacterium, Campylobacter hepaticus, has been isolated and characterised. The collected samples were processed and sequenced using high-throughput next-generation sequencing. Remarkably, this study found 15 galliform chaphamaparvoviruses (GaChPVs), of which 14 are novel under the genus Chaphamaparvovirus. Among them, nine were complete genomes that showed between 41.7% and 78.3% genome-wide pairwise similarities to one another. Subsequent phylogenetic analysis using the NS1 gene exhibited a multiple incursion of chaphamaparvovirus lineages, including a novel lineage of unknown ancestral history in free-range laying chickens in Australia. This is the first evidence of circulating many parvoviruses in chickens in Australia, which has increased our knowledge of the pathogen diversity that may have an association with SLD in chickens.


Subject(s)
Campylobacter Infections , Liver Diseases , Poultry Diseases , Animals , Chickens , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Bile , Poultry Diseases/epidemiology , Poultry Diseases/microbiology , Virome , Phylogeny , Australia/epidemiology
17.
Front Vet Sci ; 9: 1039774, 2022.
Article in English | MEDLINE | ID: mdl-36387407

ABSTRACT

Spotty Liver Disease (SLD) is a serious infectious disease which occurs mainly in laying chickens in free range production systems. SLD outbreaks can increase mortality and decrease egg production of chickens, adversely impact welfare and cause economic hardship for poultry producers. The bacterium Campylobacter hepaticus is the primary cause of the disease. This study aimed to identify the effects of C. hepaticus on chicken gut microbiota and gut structure. Three C. hepaticus strains (HV10T, NSW44L and QLD19L), isolated from different states of Australia, were used in the study. Chickens at 26-weeks post-hatch were orally dosed with one of the C. hepaticus strains (challenged groups) or Brucella broth (unchallenged or control group). Six days after the challenge, birds were necropsied to assess liver damage, and caecal content and tissue samples were collected for histology, microbiology, and 16S rRNA gene amplicon sequencing to characterize the composition of the bacterial microbiota. Strain C. hepaticus NSW44L produced significantly more disease compared to the other C. hepaticus strains and this coincided with more adverse changes observed in the caecal microbiota of the birds challenged with this strain compared to the control group. Microbial diversity determined by Shannon and Simpson alpha diversity indices was lower in the NSW44L challenged groups compared to the control group (p = 0.009 and 0.0233 respectively, at genus level). Short-chain fatty acids (SCFAs) producing bacteria Faecalibacterium, Bifidobacterium and Megamonas were significantly reduced in the challenged groups compared to the unchallenged control group. Although SLD-induction affected the gut microbiota of chickens, their small intestine morphology was not noticeably affected as there were no significant differences in the villus height or ratio of villus height and crypt depth. As gut health plays a pivotal role in the overall health and productivity of chickens, approaches to improve the gut health of the birds during SLD outbreaks such as through diet and keeping the causes of stress to a minimum, may represent significant ways to alleviate the impact of SLD.

18.
Antibiotics (Basel) ; 11(10)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36290086

ABSTRACT

Poultry production is among the most challenging industries for pathogen control. High animal density and abundance of faecal material demand strict biosecurity measures and continual vigilance in monitoring animal health parameters. Despite this vigilance, dealing with disease outbreaks is a part of farmers' routines. Phytogenic feed additives comprised of herbs, spices, essential oils, and oleoresins have potent antimicrobial and anti-inflammatory actions. Related studies are gaining substantial interest in human and animal health worldwide. In this study, a commercial blend phytogenic feed additive was supplemented to layers in an industrial free-range production system with 20,000 birds in both control and treatment groups. At the end of the trial, the ileum tissue was sampled for RNAseq transcriptomic analysis to study the host reaction to the supplement. Phytogenic supplement significantly inhibited four cholesterol-related pathways and reduced the Arteriosclerosis disease category towards improved cardiovascular health. The supplemented birds exhibited reduced disease susceptibility for 26 cancer categories with p-values in the range from 5.23 × 10-4 to 1.02 × 10-25. Major metabolic shifts in Lipid metabolism in combination with Carbohydrate metabolism have resulted in a decrease in the Obesity category, altering the ratio of fat and carbohydrate metabolism toward lower fat storage.

19.
Article in English | MEDLINE | ID: mdl-35442881

ABSTRACT

A novel species of Campylobacter was isolated from bile samples of chickens with spotty liver disease in Australia, making it the second novel species isolated from chickens with the disease, after Campylobacter hepaticus was isolated and described in 2016. Six independently derived isolates were obtained. They were Gram-stain-negative, microaerobic, catalase-positive, oxidase-positive and urease-negative. Unlike most other species of the genus Campylobacter, more than half of the tested strains of this novel species hydrolysed hippurate and most of them could not reduce nitrate. Distinct from C. hepaticus, many of the isolates were sensitive to 2,3,5-triphenyltetrazolium chloride (0.04%) and metronidazole (4 mg ml-1), and all strains were sensitive to nalidixic acid. Phylogenetic analysis using 16S rRNA and hsp60 gene sequences demonstrated that the strains formed a robust clade that was clearly distinct from recognized Campylobacter species. Whole genome sequence analysis of the strains showed that the average nucleotide identity and the genome blast distance phylogeny values compared to other Campylobacter species were less than 86 and 66%, respectively, which are below the cut-off values generally recognized for isolates of the same species. The genome of the novel species has a DNA G+C content of 30.6 mol%, while that of C. hepaticus is 27.9 mol%. Electron microscopy showed that the cells were spiral-shaped, with bipolar unsheathed flagella. The protein spectra generated from matrix-assisted laser desorption/ionization time of flight analysis demonstrated that they are different from the most closely related Campylobacter species. These data indicate that the isolates belong to a novel Campylobacter species, for which the name Campylobacter bilis sp. nov. is proposed. The type strain is VicNov18T (=ATCC TSD-231T=NCTC 14611T).


Subject(s)
Campylobacter , Liver Diseases , Perciformes , Animals , Bacterial Typing Techniques , Base Composition , Chickens , DNA, Bacterial/genetics , Fatty Acids/chemistry , Liver Diseases/veterinary , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Vet Microbiol ; 266: 109341, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35066418

ABSTRACT

Campylobacter hepaticus causes Spotty Liver Disease (SLD) in layer hens, resulting in mortality and productivity losses. Like other Campylobacter species, C. hepaticus is a fastidious organism that requires microaerobic conditions to grow and efficiently replicate. Despite its apparent vulnerability to environmental conditions, it is suspected that there are environmental sources of C. hepaticus that cause infections in chickens newly placed in production houses. Although C. hepaticus DNA has been detected in insects, rodent and wild bird droppings, and in environmental samples such as water and soil, it has not been possible to culture C. hepaticus from these sources. Therefore, it is unclear whether these environments harbor viable bacteria or the remnants of dead bacteria. Determining the viability of C. hepaticus in challenging conditions has implications for understanding the potential relevance of environmental reservoirs and routes of transmission. Other Campylobacters are known to enter viable but nonculturable (VBNC) states that result in prolonged survival in hostile environmental conditions. This study has demonstrated that C. hepaticus can also enter a VBNC state when stored in water or a simple salt solution (Ringer's solution). Cells in the VBNC state could not be recovered on media normally used for primary isolation, but media modifications were tested, and a 'resuscitation' media was developed. VBNC cells could be recovered from Ringer's solution stored at 4 °C for up to 112 days. VBNC cells are postulated to play an important role in the epidemiology of SLD.


Subject(s)
Campylobacter Infections , Campylobacter , Liver Diseases , Poultry Diseases , Animals , Campylobacter/genetics , Campylobacter Infections/microbiology , Campylobacter Infections/veterinary , Chickens/microbiology , Female , Liver Diseases/microbiology , Liver Diseases/veterinary , Poultry Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...